SINGULAR MEASURES AND HAUSDORFF MEASURES

BY M. SMORODINSKY

ABSTRACT

An example is given of a family of singular probability measures on the unit interval which are supported on a set of fractional Hausdorff dimension but cannot be represented as Hausdorff measures.

Let $x = .x_1x_2 \cdots$ be the *m*-adic expansion of a number in the unit interval. $x_i = x_i(x)$ are Borel measurable random variables. Any probability measure P on the Borel field produces a stochastic process $\{x_n\}$ and vice versa.

An interesting connection was established in [1], [2], [5] between the entropy of the stochastic process $\{x_n\}$ and the support of P. The following theorem can be easily derived from these papers using Breiman's ergodic theorem [3]. Denote by $\dim(A)$ the Hausdorff dimension of the set A in the unit interval.

THEOREM If P is a probability measure such that $\{x_i\}$ is stationary ergodic process with relative entropy h (entropy in log m units), then

- a) There exists a measurable set E such that P(E) = 1 and $\dim(E) = h$.
- b) If $\dim(F) < h$ then P(F) = 0.

In view of this Theorem we raise the following question: Can a set E be selected so that $P(A) = \text{const.} \ \mu_h(A \cap E)$ where $\mu_h(B)$ is the Hausdorff h-measure of B? Or more generally,

(*)
$$P(A) = \text{const. } \mu_{\psi}(A \cap E)$$

where $\psi = \psi(t)$ is a real function on $0 \le t \le t_0$, for some $t_0 > 0$, continuous, concave and strictly increasing such that h(0) = 0. $\mu_{\psi}(B)$ is defined as follows. Let $\{I_{\alpha}\} = \mathscr{C}_{\rho}$ be a sequence of intervals of length less than ρ covering A.

$$\mu_{\psi}(A) \; = \; \lim_{\rho \to 0} \; \inf_{\mathscr{C}_{\rho}} \; \; \sum_{I\alpha \in \mathscr{C}_{\rho}} \psi(\big|\,I_{\alpha}\big|) \, .$$

(h-measure is the case where $\psi(t)=t^h$). In some cases, like the Cantor measure (the measure which makes x_i , in the ternary expression, i.i.d. $P(x_i=0)=P(x_i=2)=\frac{1}{2}$) the answer is yes. The purpose of this note is to show that this is an exceptional case by giving an example of a family of singular probability measures for which the answer is negative. Let P be the measure which makes x_i i.i.d. in the binary expansion $P(x_i=1)=p$, $P(x_i=0)=1-p$, $0 . In what comes let <math>\log x = \log_2 x$. Put

$$y_i = \begin{cases} -\log p & \text{if } x_i = 1\\ \log(1-p) & \text{if } x_i = 0 \end{cases}$$

then y_i are i.i.d., $E(y_i) = h$ = the entropy of $\{x_i\}$ and $Var(y_i) = \sigma^2 > 0$. Let I_n^{α} denote a binary interval of order n and $I_n(x)$ the binary interval of order n containing x. Obviously $S_n(x) = \sum_{i=1}^n (x) = -\log P(I_n(x))$. Let us prove first that there exists a Borel set A such that P(A) = 1 and $\mu_h(A) = 0$ (and therefore P cannot be represented in the form (*) for $\psi(t) = x^h$). The set

$$A = \{S_a \le nh - \sigma \sqrt{n} \text{ i.o.}\} = \{x : P(I_n(x)) \ge 2^{-nh + \sigma \sqrt{n}} \text{i.o.}\}$$

has probability one. For a given n_0 choose for each $x \in A$ the first $I_n(x)$ $n \ge n_0$ such that $P(I_n(x)) \ge 2^{-nh+\sigma\sqrt{n}}$. The sequence of intervals $\{I_n^{\alpha}\}$ thus obtained form a covering of A with $\rho = \alpha^{-n_0}$. Therefore

$$1 = \sum P(I_n^{\alpha}) \geq \sum_{\alpha} |I_n^{\alpha}|^h 2^{\sigma \sqrt{n}} \geq 2^{\sigma \sqrt{n^0}} \sum |I_n^{\alpha}|^h.$$

letting n_0 tend to infinity we get a vanishing sequence of coverings.

Now, suppose $\psi(t)$ is a continuous concave function near the origin such that $\psi(0) = 0$. Then we prove that either

- a) There exist a set A, P(A) = 1, $\mu_{\psi}(A) = 0$, or
- b) For every set A such that P(A) > 0, $\mu_{\psi}(A) = \infty$.

Let $\phi(n)$ be a sequence such that

$$\psi(2^{-n}) = 2^{-nh+\sigma\sqrt{n\phi(n)}}$$

in view of what we have proved and the theorem we have to consider only ψ such that $\phi(n)$ in increasing sequence and $\phi(n/\sqrt{n} \to 0)$. For such sequences the law of iterated logarithm asserts, [4], that either $\phi(n)$ belongs to the upper

class or to the lower class with respect to $\{y_i\}$. In either case $\phi(n) + \text{const.}/\phi(n)$ belongs to the same class ([4] page 383, remark 1). Suppose $\phi(n)$ is in the lower class, then so is $\phi(n) + 1/\phi(n)$ and

$$P\left\{S_n \le nh - \sqrt{n}\,\sigma(\phi(n) + \frac{1}{\phi(n)}\text{ i.o.}\right\}$$

$$= P\left\{x : P(I_n(x)) \ge 2^{-nh + \sigma\sqrt{n}(\phi(n) + 1/\phi(n))}\text{ i.o.}\right\} = 1.$$

Therefore we can select a covering $\{I_n^{\alpha}\}$ of this set such that $n \geq n_0$ and

$$1 = \sum P(I_n^{\alpha}) \geq \sum_{\alpha} \psi(|I_n^{\alpha}|) 2, (\sqrt{n/\phi(n)}) \geq 2, (\sqrt{n^0/\phi(n^0)}) \sum_{\alpha} \psi(|I_n^{\alpha}|)$$

but $(\sqrt{n_0})/\phi(n_0) \to \infty$, therefore $\mu_{\psi}(A) = 0$. Now if $\phi(n)$ belongs to the upper class then so does $\phi(n) - 1/\phi(n)$ and

$$P\{x: P(I_n(x)) \ge 2^{-nh+\sigma\sqrt{n(\phi(n)-1/\phi(n))}} \text{ i.o.}\} = 0.$$

Thus the sequence of sets

$$E_m = \{x: P(I_n(x)) \le 2^{-nh+\sigma\sqrt{n(\phi(n)-1/\phi(n))}}, n \ge m\}$$

is monotonically increasing and $\lim P(E_m) = 1$. Given A with positive probability and $0 < \delta < P(A)$ there is an m such that $P(A \cap E) \ge \delta$. For any covering $\{I_n^a\}$ (According to Billingsley [1] it is enough to consider binary coverings) of $A \cap E_m$ such that $n \ge m$ for all α

$$2^{-,(\sqrt{m}/\phi(n))} \cdot \sum_{\alpha} \psi(|I_n^{\alpha}|) \geq \sum_{\alpha} \psi(|I_n^{\alpha}|) 2^{-\sigma\sqrt{n}/\phi(n)} \geq \sum_{\alpha} P(I_n^{\alpha}) \geq P(A \cap E_m) \geq \delta$$

and therefore as $m \to \infty$, $\Sigma \psi(\left|I_n^{\alpha}\right|) \to \infty$.

Acknowledgement

I am grateful to Lester E. Dubins for his valuable comments on the problem.

REFERENCES

- 1. P. Billingsley, Hausdorff dimension in probability theory, Ill. J. Math. 4 (1960), 187-209...
- 2. P. Billingsley, Hausdorff dimension in probability theory II, Ill. J. Math. 5 (1961), 291-298.
- 3. L. Breiman, The individual ergodic theorem of information theory, Ann. Math. Stat. 28 (1957), 809-811, and Correction Note 31 (1960), 809-810.

- 4. W. Feller, The general form of the so-called law of the iterated logarithm, Trans. Amer. Math. Soc., 54 (1943), 373-402.
- 5. J. R. Kinney, Singular function associated with Markov chains, Proc. Amer. Math. Soc. 9 (1958), 603-608.

TEL AVIV UNIVERSITY

AND

University of California, Berkeley